\qquad

B.TECH. DEGREE EXAMINATION, NOVEMBER 2011

Third Semester
Branch : Computer Science and Engineering LOGIC SYSTEM DESIGN (R)
[2009 admissions-Improvement 2004-2009 admissions-Supplementary]

Time : Three Hours
Maximum : 100 Marks

Part A

Answer all questions briefly. Each question carries 4 marks.

1. Perform the following :
(a) $(101101.10101)_{2} \rightarrow(?)_{10}$
(b) $48_{10}-29_{10} \rightarrow(?)_{2}$.

Convert the numbers into binary and subtract using 2's complement method.
2. What is BCD ? What are its advantages and disadvantages ?
3. Using Boolean theorems, prove

$$
(\mathrm{A}+\mathrm{C})(\mathrm{A}+\mathrm{D})(\mathrm{B}+\mathrm{C})(\mathrm{B}+\mathrm{D})=\mathrm{AB}+\mathrm{CD}
$$

4. Obtain the complements of the following expressions :
(i) $\mathrm{A}+\mathrm{BC}+\mathrm{AB}$.
(ii) $\mathrm{A}(\mathrm{B}+\mathrm{C})(\overline{\mathrm{C}}+\overline{\mathrm{D}})$.
5. Explain the function of a D flip-flop using a suitable diagram and slow how it works as a latch.
6. What factors determine whether a counter operates as a count-up or count-down type ? Explain with necessary diagrams
7. Show how a full adder can be converted to a full subtractor with the inclusion of an inverter circuit.
8. Design a half subtractor using only basic gates.
9. Why are shift registers considered to be basic memory devices? What are the different types of shift registers?
10. What are the differences between Johnson counter and ring counter? What are their applications?

$$
(10 \times 4=40 \text { marks })
$$

Part B
 Answer any one full question from each module.
 Each full question carries 12 marks.

Module 1
11. (a) Express the following as Excess-3 codes:
(i) 1947.
(ii) 2011 .
(iii) 2000 .
(iv) 649 .
(b) What are weighted and non-weighted codes? Explain with suitable examples.

Or
12. (a) Encode the following binary numbers into 7 bit even parity Hamming code :
(i) 0101.
(ii) 1000 .
(iii) 1011 .
(iv) 1010 .
(b) Convert the following decimals to Gray codes :
(i) 369 .
(ii) 105 .
(iii) 69 .
(iv) 90 .

Module 2

13. (a) Convert $f=\mathrm{ABCD}+\overline{\mathrm{A}} \mathrm{BC}+\overline{\mathrm{B}} \overline{\mathrm{C}}$ into a sum of minterms by algebraic method. (5 marks)
(b) Using K-map, simplify the following function, and obtain minimum product of sums form and draw the circuit.

Or
14. A corporation having 100 shares entitles the owner of each share to cast one vote at the shareholder's meeting. Assume that A has 40 shares, B has 30 shares, C has 20 shares and D has 10 shares. A two-third majority is required to pass a resolution in a shareholder's meeting. Each of these four men has a switch which he closes to vote YES and opens to vote NO for his percentage of shares. When the resolution is passed the output, LED must be ON. Derive a truth-table for the output function and give the sum of product equation for it. Draw the minimal logic circuit diagram.

Module 3

15. (a) Draw the circuit diagram of a master-slave JK flip-flop and show how the race around condition is eliminated in it?
(b) What are the differences in the operation of master-slave and edge-triggered flip-flops ? Compare and contract their performances.

Or

16. Design a synchronous counter using K-maps following sequence : 000, 010, 101, 110 and repeat. The undesired states 001, 011, 100 and 111 must always go to 000 on the next clock pulse. Draw the circuit diagram.

Module 4

17. Design and draw the logic diagram of a circuit for addition/subtraction. Use a control variable W and a circuit that functions as a full-adder when $W=0$, as a full-subtractor when $W=1$.

Or

18. With a neat circuit diagram, explain the working of a carry save adder. What are its merits and limitations?

Module 5

19. Using K-map, design a 4-bit self correcting ring counter, assuming 0000 as initial state. Draw the circuit diagram.

Or

20. Draw the logic diagram for a divide-by-18 Johnson counter. Sketch the timing diagram and write the sequence in tabular form.
