\qquad
Name \qquad

B.TECH. DEGREE EXAMINATION, NOVEMBER 2011
 Third Semester
 Branch-Computer Science/Information Technology
 ENO 10301 B-ENGINEERING MATHEMATICS-II (CS, IT)
 (Regular)

Time : Three Hours
Maximum : 100 Marks

Part A

Answer all questions briefly. Each question carries 3 marks.

1. Write in symbolic form :
(a) Some girls are not white.
(b) It is true that all roads lead to Kollam
(c) Some cones are not good.
2. Using Euclidean algorithm, find gcd of 15276 and 2055.
3. Give examples of two functions $f: \mathrm{N} \rightarrow \mathrm{Z}$ and $g: \mathrm{Z} \rightarrow \mathrm{Z}$ such that $g \circ f$ is injective but g is not injective.
4. Define a Bounded lattice and a Sublattice.
5. Define
(a) Hamiltonian cycle.
(b) Spanning tree.

Part B

Answer all questions, each question carries 5 marks.
6. Construct truth table for $\mathrm{P} \vee 7(\mathrm{P} \wedge \mathrm{Q})$.
7. If $a \equiv b(\bmod n)$ then show that $a^{k}=b^{k}(\bmod n)$ for every positive integer k.
8. I denotes the set of all integers and m is an integer. Show $\mathrm{R}=\{\langle x, y\rangle / x-y$ is divisible by $m\}$ is an equivalence relation.
9. Define chain and subchains and show that every chain is a distribution lattice.
10. Give an example of a graph in which the length of the longest cycle is 9 and the length of the shortest cycle is 4 .
($5 \times 5=25$ marks)

Part C

Answer any one full question from each module.
Each full question carries 12 marks.

Module 1

11. Show that:
(a) $(\exists x)(\mathrm{F}(x) \wedge \mathrm{S}(x)) \rightarrow(y)(\mathrm{M}(y) \rightarrow \mathrm{W}(y))$.
(b) $\quad(\exists x)(\mathrm{M}(y) \wedge\rceil \mathrm{W}(y))$ if $(x)(\mathrm{F}(x) \rightarrow\rceil \mathrm{S}(x))$ follows.
12. (a) Show that $(\forall x)(\mathrm{P}(x) \wedge \mathrm{Q}(x)) \rightleftarrows((\forall x) \mathrm{P}(x)) \wedge((\forall x) \mathrm{Q}(x))$ is a logically valid statement.
(b) Show the following implicationswithout constructing truth tables.

$$
(P \rightarrow Q) \vee(R \Leftrightarrow P) \wedge(Q \vee R) .
$$

Module 2

13. (a) If a / c and b / c then prove that $g c d(a, b) / c$.
(b) If p is a prime, then prove that $a^{p} \equiv a(\bmod p)$.

Or
14. (a) Show that the functions f and g which both are from $\mathrm{N} \times \mathrm{N}$ to N given by $f(x, y)=x+y$ and $g(x, y)=x y$ are onto but not one-to-one.
(6 marks)
(b) Check whether the following functions are invertible. If so, compute the inverse :
(i) $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=|x|, \forall x \in \mathbb{R}$.
(3 marks)
(ii) $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x)=2 x-1, \forall x \in \mathbb{R}$.

Module 3

15. (a) Show that the "set inclusiong \subseteq " is a partial ordering on power set of A for any set A .
(6 marks)
(b) If relations R and S are reflexive, symmetric and transitive, show that $R \cap S$ is also reflextive, symmetric and transitive.
16. (a) Define an equivalence relation. If \sim is an equivalence relation of a set X, show that the corresponding equivalence classes form a portion of X.
(6 marks)
(b) Define partial order and total order relations. Give an example of a partial order which is not a total order and also vice versa.
(6 marks)

Module 4

17. (a) If $<\mathrm{L}, * \oplus>$ is a distributive lattice, then prove for any $a, b, c \in \mathrm{~L}$, $(a * b=a * c) \wedge(a \oplus b=a \oplus c) \Rightarrow b=c$.
(b) Define a complete lattice and complemented lattice. Draw the Hasse diagram for D_{40}, the lattice of all positive divisors of 40 .
(6 marks)
Or
18. (a) In a lattice $<\mathrm{L}, \leq>$ with $a, b, c \in \mathrm{~L}$, show that $a \leq c \Rightarrow a \oplus\left(b^{*} c\right) \leq(a \oplus b)^{*} c$. (6 marks)
(b) Which of the two lattices $<\mathrm{S}_{\mathrm{n}}, \mathrm{D}>$ for $n=30$ and $n=45$ are complemented ? Prove whether they are distributive.
(6 marks)

Module 5

19. Let G be the graph shown below :

(a) Find a closed walk of length 6. Is your walk a trial? (2 marks)
(b) Find an open walk of length 12 . Is your walk a path?
(2 marks)
(c) Find a closed trial of length 6. Is your trial a cycle?
(2 marks)
(d) What is the length of the longest cycle in G ?
(2 marks)
(e) What is the length of a longest path in G ? How many paths are there of this length ?
(4 marks)

Or

20. (a) Draw all non-label-isomorphic graphs with three vertices using the label set $\mathrm{V}=\{a, b, c\}$.
(b) If G be a connected graph which is not a tree and let C be a cycle in G. Prove that the complement of any spanning tree of G contains at least one edge of C .
