\qquad
Name

B.TECH. DEGREE EXAMINATION, MAY 2012

Fourth Semester

EN 010 401-ENGINEERING MATHEMATICS-III

(Regular-2010 Admissions)
[Common to all Branches]

Time : Three Hours

Maximum : 100 Marks

> Part A
> Answer all questions.
> Each question carries 3 marks.

1. Expand $\pi x-x^{2}$ in a half range sine series in the interval $(0, \pi)$ upto the first three terms.
2. Find the Fourier Transform of $f(x)=\left\{\begin{array}{l}1 \text { for }|x|<1 \\ 0 \text { for }|x|>1 .\end{array}\right.$
3. Form the partial differential equation by eliminating the arbitrary functions from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
4. During war, one ship out of nine was sunk on an average in a certain voyage. What was the probability that exactly 3 out of a convoy of 6 ships would arrive safely?
5. A random sample of 900 members has a mean 3.4 cm . Check if it can be reasonably regarded as a sample from a large population of mean 3.2 cm . and $\mathrm{SD}=2.3 \mathrm{~cm}$.

Part B

Answer all questions.
Each question carries 5 marks.
6. Obtain Fourier series for the function

$$
\begin{aligned}
f(x) & =\pi x, & & 0 \leq x \leq 1 \\
& =\pi(2-x) & & 1 \leq x \leq 2
\end{aligned}
$$

7. Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$ and hence derive Fourier sine Transform of $\therefore \phi(x)=\frac{x}{1+x^{2}}$.
8. Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$, given that $\frac{\partial z}{\partial y}=-2 \sin y$, when $x=0$ and $z=0$, when y is an odd multiple of $\frac{\pi}{2}$.
9. Assume that the probability of an individual coal-miner being killed in a mine accident during an year is $\frac{1}{2400}$. Use Poisson's distribution to calculate the probability that in a mine employing 200 miners, there will be at least one fatal accident in a year.
10. A coin was tossed 400 times and the head turned up 216 times. Test the hypothesis that the coin is unbiased.

$$
(5 \times 5=25 \mathrm{mark}
$$

Part C

Answer any one full question from each module.
 Each full question carries 12 marks.

Module 1

11. If $f(x)=x, 0<x<\pi / 2$

$$
=\pi-x, \pi / 2<x<\pi \text {, show that }
$$

(a) $f(x)=\frac{4}{\pi}\left[\sin x-\frac{\sin 3 x}{3^{2}}+\frac{\sin 5 x}{5^{2}}-\ldots \ldots ..\right]$.
(5 marks)
(b) $f(x)=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{\cos 2 x}{1^{2}}+\frac{\cos 6 x}{3^{2}}+\frac{\cos 10 x}{5^{2}}+\ldots \ldots.\right]$.
12. Obtain the first three coefficients in the Fourier Cosine series for y from the following data :

$$
\begin{array}{rlllrlll}
x & : & 0 & 1 & 2 & 3 & 4 & 5 \\
y & : & 4 & 8 & 15 & 7 & 6 & 2
\end{array}
$$

(12 marks)

Module 2

13. (a) Using Fourier integral representation, show that $\int_{0}^{\infty} \frac{\cos \omega x}{1+\omega^{2}} d \omega=\frac{\pi}{2} e^{-x}(x \geq 0)$ (6 marks)
(b) Solve for $F(x)$ the integral equation $\int_{0}^{\infty} F(x) \sin t x d x= \begin{cases}1, & 0 \leq t<1 \\ 2, & 1 \leq t<2 \\ 0, & t \geq 2\end{cases}$
14. (a) Using Parseval's identity, prove that $\int_{0}^{\infty} \frac{d t}{\left(a^{2}+t^{2}\right)\left(b^{2}+t^{2}\right)}=\frac{\pi}{2 a b(a+b)}$.
(b) Solve the integral equation $\int_{0}^{\infty} \mathrm{F}(x) \cos p x=d x\left\{\begin{array}{rr}1-p, & 0 \leq p \leq 1 \\ 0, & p>1\end{array}\right.$ and hence deduce that

$$
\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t=\frac{\pi}{2}
$$

Module 3

15. Solve $2 z x-p x^{2}-2 p x y+p q=0$.

Or

16. Solve :
(a) $\left(\mathrm{D}^{2}-2 \mathrm{DD}^{\prime}+\mathrm{D}^{\prime 2}\right) z=e^{(2 x+3 y)}$.
(b) $\frac{\partial^{2} z}{\partial x^{2}}+3 \frac{\partial^{2} z}{\partial x \partial y}+2 \frac{\partial^{2} z}{\partial y^{2}}=12 x y$.

Module 4

17. A random variable X has the following probability distribution values of X :

x	$:$	0	1	2	3	4	5	6	7	8	9
$p(x)$	$:$	a	$3 a$	$5 a$	$7 a$	$9 a$	$11 a$	$13 a$	$15 a$	$17 a$	$19 a$

(a) Determine the value of a
(b) Find $\mathrm{P}(\mathrm{X}<3), \mathrm{P}(\mathrm{X} \geq 3), \mathrm{P}(2 \leq \mathrm{X}<5)$.
(c) What is the smallest value for which $\mathrm{P}(\mathrm{X} \leq x)>0.5$?

Or
18. A sample of 100 button cells tested to find the length of life, produced the following results : $\bar{x}=12$ hours, $\sigma=3$ hours. Assuming the data to be normally distributed, what percentage of button cells are expected to have life
(a) more than 15 hours;
(b) less than 6 hours; and
(c) between 10 and 14 hours?

Module 5

19. Two independent sample sizes of 7 and 6 has the following values :

Sample A	$:$	28	30	32	33	31	29	34
Sample B	$:$	29	30	30	24	27	28	-

Examine whether the samples have been drawn from normal populations having the same variance.
(12 marks)
Or
20. Records taken of the number of male and female births in $800 \mathrm{f}:$ ilies having four children are as follows:

No. of male births	$:$	0	1	2	3	4
No. of female births	$:$	4	3	2	1	0
No. of families	$:$	32	178	290	236	94

Test whether the data are consistent with the hypothesis t he binomial law holds and the chance of male birth is equal to that of the female birth, namely, $p=q=\frac{1}{2}$.
(12 marks)
[$5 \times 12=60$ marks]

