F 9244

608

(Pages:3)

B.TECH. DEGREE EXAMINATION, NOVEMBER 2011

Third Semester

Branch : Computer Science/ Information Technology

ENGINEERING MATHEMATICS-II (R, T)

2009 Admissions - Improvement

2004 - 2009 Admissions - Supplementary

Time : Three Hours

Maximum: 100 marks

Answer any one full question from each module. Each full question carries 20 marks.

Module 1

- 1. (a) Let p be "He is tall" and let q be "He is handsome". Write each of the following statements in symbolic form using p and q: (Assume that "He is short" means "He is not tall", i.e., $\sim p$)
 - (i) He is tall and handsome.
 - (ii) He is tall but not handsome.
 - (iii) He is neither tall nor handsome.
 - (iv) It is false that he is short or handsome.
 - (b) Find the truth tables of the following :
 - (i) $p \wedge (q \vee r)$
 - (ii) $(p \wedge q) \vee (p \wedge r)$.

Or

(c) Prove that disjunction distributes over conjunction ; i.e., prove the distribution law :

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r).$

- (d) Determine the truth value of each of the following statements and also negate each of them.
 - (i) $\forall x, |x| = x.$ (ii) $\exists x, x^2 = x.$
 - (iii) $\forall x, x+1 > x$. (iv) $\exists x, x+2 = x$.

Turn over

Module 2

2. (a) Let R and S be the relations on $A = \{1, 2, 3, 4\}$ defined by

$$R = \{(1,1), (3,1), (3,4), (4,2), (4,3)\}$$

- $S = \{(1,3), (2,1), (3,1), (3,2), (4,4)\}$. Find the
 - (i) Composition relation R o S.
 - (ii) Composition $R^2 = R \circ R$ for the relation R.

Or

- (b) Let $f: A \to B$ and $g: B \to C$ are one-to-one functions. Show that $gof: A \to C$ is one-to-one.
- (c) Let R be a reflexive relation on a set A. Show that R is an equivalence relation if and only if (a, b) and (a, c) are in R implies that (b, c) is in R.

Module 3

- 3. (a) Let $S = \{2, 3, 4, 5, 12, 16, 24, 36, 48\}$ be ordered by divisibility. Find
 - (i) the predecessors and immediate predecessors of 12
 - (ii) the successors and immediate successors of 12.
 - (b) Define the dual of a statement in lattice L. Why does the principle of duality apply to L?

Or

- (c) Let \leq S be a partial ordering of a set S. Define the dual order on S. How is the dual order related to the inverse of the relation \leq ?
- (d) Show why each element of a linearly ordered set can have at most one immediate predecessor.

Module 4

4. (a) Find the discrete numeric function corresponding to the generating function.

$$A(z) = \frac{(1+z)^2}{(1+z)^4}$$

(b) Obtain the particular solution for $a_r - 5a_{r-1} - 6a_{r-2} = 1$.

Or

(c) Given that $a_0 = 0$, $a_1 = 1$, $a_2 = 4$ and $a_3 = 12$ satisfy the recurrence relation $a_r + C_1 a_{r-1} + C_2 a_{r-2} = 0$. Determine a_r .

Module 5

5. (a) Find the sum *m* of the degrees of the vertices of G where $V(G) = \{A, B, C, D\}$ and

(i)
$$E(G) = [\{A, B\}, \{A, C\}, \{B, D\}, \{C, D\}].$$

(ii)
$$E(G) = \lfloor \{A, B\}, \{A, C\}, \{A, D\}, \{B, A\}, \{B, B\}, \{C, B\}, \{C, D\} \rfloor$$
.

(b) Find the connected components of G where $V(G) = \{A, B, C, X, Y, Z\}$ and $E(G) = [\{A, X\}, \{C, X\}].$

(c) Find all the spanning trees of the graph shown in figure below 1.

ť,

-

 $(5 \times 20 = 100 \text{ marks})$